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The mathematical formulation of the linearized potential theory for a slowly 
translating body undergoing oscillations in infinitely deep water is derived based on 
a perturbation series in terms of forward speed. It is shown that the hydrodynamic 
force on the oscillating body can be obtained from the solution of the velocity 
potential without forward speed, if second-order terms in forward speed are 
neglected. An example of a submerged circular cylinder is discussed. The numerical 
results are compared with the general solution of the linearized potential theory by 
a coupled finite-element method (Wu & Eatock Taylor 1987) which is not restricted 
to  low forward speeds. Very good agreement is found. The nonlinear effect of the 
steady potential on the hydrodynamic forces is also discussed and is illustrated for 
a floating semicircular cylinder. 

1. Introduction 
In  the prediction of motions of marine vehicles advancing in waves, a common 

method is to use strip theory. Based on the assumptions of linearized potential flow 
analysis, the strip theory further assumes that the fluid flow corresponding to each 
section of the body is two dimensional. The application of this theory requires the 
body to be slender and the relative magnitudes of forward speed and encounter 
frequency to be limited to an appropriate range of values. More recently there have 
been attempts, initiated by Chang (1977), to obtain the solution of the linear velocity 
potential using three-dimensional methods. It has been observed that the three- 
dimensional theory generally gives better agreement with experimental data on ship 
models, but it requires much more effort. The numerical calculation is extremely 
expensive compared with strip theory. 

To reduce the computer time, it is necessary to use an appropriate numerical 
procedure and Green function form. One approach is to exploit any simplifications 
made possible by considering the case of low forward speed at which many merchant 
ships operate. Huijsmans (1986) expanded the source distribution over the body 
surface in a perturbation series of forward speed and neglected the terms of order 
O(u2). He was then able to use a correspondingly simplified Green function form. 
However, it may be noticed that this Green function has a second-order singularity 
which may not be easy to  deal with. 

In  this work, we analyse the problem of a body advancing in waves a t  low forward 
speed in a different manner. Instead of expanding the source distribution, we use the 
perturbation series of the potential in terms of forward speed and neglect terms of 
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order O( V) or higher. We then show that to calculate the hydrodynamic force on the 
advancing body we only need the solution without forward speed. Equations for the 
forces are obtained which contain an integral over the free surface of the potential 
without forward speed. 

In addition to simplifying the problem, the present formulation can also provide 
useful insight into the low-forward-speed behaviour of more general analyses, 
intended for any value of forward speed. Such formulations are under development 
by a number of investigators, and linear three-dimensional theory is being used to 
obtain results for both submerged bodies and slender ships. In the general 
formulation, the Green function with forward speed depends on four wavenumbers. 
As the forward speed becomes very small, two of these wavenumbers become very 
large, causing a highly oscillatory behaviour of the Green function and substantial 
computational difficulties. The present formulation, however, is always stable and 
the numerical solution should therefore tend to the correct limit as the forward speed 
tends to zero. 

Another difficulty arises when one attempts to develop the general formulation for 
an arbitrary body with forward speed at the free surface. Unless the body is 
sufficiently slender (or submerged), the assumptions of the fully linear theory can no 
longer be justified, as discussed by Tuck (1965). An attempt has therefore been made 
here to investigate the nonlinear effect of the steady potential at the free surface on 
the hydrodynamic force. We have derived a mathematical model which takes 
account of this nonlinear coupling between steady and unsteady components of the 
velocity potential, but retains the linearization of the unsteady potential associated 
with small oscillations of the.body. It is found that this coupling effect has important 
implications for satisfaction of the reverse flow relations of Timman & Newman 
(1962). 

A possible criticism of this and many other models is that no attempt is made to 
account for flow separation. Our analysis is based on the assumptions of potential 
flow theory, which have been very widely adopted in investigations of ship motions. 
But these clearly impose certain limitations on the applicability of the theory. For 
a body in a real fluid, the effect of viscosity is known to form a thin boundary layer, 
which will remain thin and attached provided that the body is streamlined : outside 
this boundary layer, the assumptions of potential flow theory are valid. It has also 
been found that potential flow predictions of the motions of bluff bodies in waves 
without forward speed generally agree well with experimental data, except in 
circumstances where separation is induced by sharp corners and bilge keels (e.g. in 
barge rolling). It seems reasonable to proceed on the basis that the addition of a small 
forward speed is unlikely to negate the applicability of potential flow theory for a 
slender body such as a ship in waves. The present paper adopts this approach. It aims 
to produce semi-analytical results, which may be used to assist the development of 
a general three-dimensional formulation for arbitrary (but slender) ship forms. The 
solutions obtained here are limited to circular and semicircular cylinders moving 
transverse to their axes; and these are clearly not slender or streamlined bodies. But 
the case for using potential flow theory here rests on the need to provide results which 
can validate the numerical formulations required for arbitrary ship forms. The 
results also shed some light on the implications of certain terms in the potential flow 
formulation. 

The paper is organized as follows. Section 2 introduces the general boundary-value 
problem, and discusses aspects of the linearization. The implications of the low- 
forward-speed assumption for a fully linear analysis are then investigated in $3. This 
analysis is appropriate to a slender body at the free surface, or a deeply submerged 
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body. General expressions are obtained for the added mass and damping of two- and 
three-dimensional bodies a t  low forward speed. Based on the analytical solution for 
an oscillating submerged circular cylinder without forward speed, given by Ogilvie 
(1963), results are obtained showing the influence of forward speed on the 
hydrodynamic coefficients. Comparison is made with the general numerical solution 
of the linearized potential problem using the coupled finite element method (Wu 8.z 
Eatock Taylor 1987). 

The nonlinear effect of the steady potential a t  the free surface is examined in 94. 
This leads to additional contributions to the expressions for the hydrodynamic 
coefficients. Numerical results are obtained for a floating semicircular cylinder, based 
on the method of multipole expansions given by Ursell(l949). In  $5 some conclusions 
are drawn concerning the reverse flow relationship, and the influence of the nonlinear 
effect. 

2. The boundary-value problem 
We define the right-handed coordinate system 0-xyz so that x points in the 

direction of forward speed U and z upwards. The origin of the coordinates is located 
on the undisturbed free surface, and moves with the body a t  the same forward speed. 
We consider the case of forced periodical motions a t  the encounter frequency w and 
take the time factor as ei'*'. Then the total potential can be written as a linear 
superposition 6 

@ = -Ux+U$+xv,$ieiut, (1) 
3-1 

where 6 is the potential due to  unit forward speed, gi is the radiation potential 
corresponding to each of the six rigid body degrees of freedom of the body and yi is 
the corresponding motion amplitude which is assumed to be small throughout this 
paper. Based on the usual assumption of potential flow theory we have 

in the whole fluid domain, and in deep water @ satisfies 
V2@ = 0, (2) 

lim V@ = 0. 
z+-m 

On the body surface So, the steady potential satisfies 

a$ 
an, - nx' 
-- 

(3) 

(4) 

where nx is the component in the x-direction of the inward normal n on So. The 
components of the radiation potential satisfy (Newman 1978) 

a$. --Z an = iwn, + Urn,, 
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The boundary conditions on the free surface 8, are, of course, highly nonlinear 
because of the steady potential, even in the case of small oscillatory motions. We 
start from the general free-surface conditions derived by Newman (1978). For the 
steady potential we have 

; w . v ( w ) + g u ~ z  =0,  ( 7 4  

(7 b )  
- 1  on z = where C=--(w"-u") z={ -. 

2g 
and for the unsteady body motion potential 

Y 1W.V(W)+gU&-w2q5+2iwW.Vq5+ W.V(W-Vq5)+iVq5.V(W)+yq5z = 0, (8) 
on z = C, where [ is the total free-surface elevation and 

6 

q5 = x 9,q51. 
f-1 

Equation ( 8 )  has retained the nonlinear terms of 6, but neglected nonlinear terms in 
d j  on the basis of the small-motion assumption and the linearization implicit in (1). 

In  general the solution for the steady potential would require an iterative 
procedure, because of the nonlinear coupling between (7a )  and (7b) .  If however we 
assume that U/(gZ)i is small, where I is a length characterizing the variation of 6, then 
the free-surface condition on the steady potential can be taken as 

- 

$ z = ~  o n z = O = C ,  (9 )  
after terms of order O(CT2) or higher are neglected. Applying the same assumption to 
the free-surface condition for the radiation potentials, we obtain 

gU#z-w02$+2ioW.~#+g$2 = 0, (10) 
on z = 6, where 5 = - (iw/g) q5- ( l /g )  W - Vq5 since c= 0. Expanding the last equation 
into a Taylor series about z = 0, using 

= -%p6z2-i 1 w - v # ~ z z + o ( ~ ) ,  
9 

and noticing that the expansions of the other terms are of higher order in q5 we have 

- iw&TZz - wz$ + 2iw W - V$ + y#z = 0, (12) 
on z = 0. This has been obtained by linearizing with respect to the body motion 
potential q5, but retaining the product term involving the steady potential. In a fully 
linear theory, this term is absent from the free-surface boundary condition. 

Since (12) is linear with respect to 4, it is also satisfied by the component q5f. 
Provided that these boundary-value problems can be solved satisfactorily, the added 
masses ,uif and damping coefficients A, can then be obtained from (Newman 1978) 

ri5 = w2pi* - iwh, 

= -pJso[iw#5+ W.Vq5f]nidS, 

where p is the density of the fluid. 
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3. A fully linear analysis for low forward speed 
3.1. A perturbation expansion for the velocity potential #j 

For a slender body at  the free surface, or for a deeply submerged body, it is often 
assumed that the disturbance at the free surface due to steady forward speed is small 
and its product terms and those with the oscillating potential may be neglected in the 
free-surface boundary condition. The latter may then be expressed in the form 
(Newman 1978) 

( 1 4 4  tc6z+62z = 0, 

on the undisturbed free surface S,, where p = g/,!?, 7 = wU/g and v = d / g .  For a 
consistent analysis of a body at  the free surface, the influence of the steady potential 
on the body-surface condition expressed by (5)  should also be neglected. For a deeply 
submerged body, however, the steady potential may be negligible on the free surface 
but not on the body: in this case the complete expression given in (5)  may be more 
appropriate. 

To complete the specification of the boundary-value problem, we need to include 
radiation conditions on a surface S ,  at infinity. For the steady potential this is 
usually represented by the assumptions that there is no wave due to 6 far in front 
of the body, but there are waves far behind the body. The assumed radiation 
condition for 4, states that the wave whose group velocity is larger than the forward 
speed is in front of the body ; otherwise the waves propagate behind. 

Even after linearization, the form of the free-surface condition in (14b) causes 
considerable difficulties: the influence of forward speed U on solution for q$ is 
particularly complex. Grue & Palm (1985) considered a two-dimensional problem of 
a submerged circular cylinder. For this particular case they were able to write the 
source distribution over the cylinder surface in a Fourier series, and an analytical 
solution was thereby obtained. The linear solution for an arbitrary cylinder 
submerged below the surface was obtained by Wu & Eatock Taylor (1987) using a 
coupled finite-element method. A numerical solution of the three-dimensional linear 
problem was first obtained by Chang (1977), by distributing sources over the body 
surface and waterline. Other linear formulations employing distributions of sources 
have been given by Inglis t Price (1981) and Guevel & Bougis (1982). 

Here we make use of the assumption of low forward speed to derive a simpler 
formulation. We write the radiation potential as a perturbation expansion in 
u = U/wa and neglect terms of O(u2) and higher. Thus 

T T  

where a may be defined as the typical dimension of the body. Substituting (15) into 
the governing equations for 4, and rearranging results according to the order of U,  
we obtain from the zeroth-order terms 
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and from the first-order terms 

Here $; are the potentials without forward speed, whose solution is much easier to 
obtain than that with forward speed. $; is related to the derivative of +j with respect 
forward speed a t  U = 0, and its solution would need additional effort. However, we 
will show that to obtain rij in (13), we only need the solution of 4;. 

3.2. Expressions for hydrodynamic coeficients in terms of q$' 
Ogilvie &, Tuck (1969) have shown that 

( W V$,) ni ds = - U l s O  m, dS- GIca 4, n, dl, 
1s. 

(20) 

where C, is the waterline of the body. At low forward speed, because of the free- 
surface condition (9) for 6, equation (20) becomes 

( W .  V$) ni dS = - U 

Thus the hydrodynamic coefficients in (13) may be written 

r . . = - P S , .  23 [ iw$. n a . - Urni 4J dS 

= - p  Is. [ - w2@ ni + ioU( 9- mi #)] dS 

U 
= @*aij - iobij + pioU mi q5; dS - piw - lsO 4; n, dS, 

a 

where aii and b, are the added masses and damping coefficients without forward 
speed. We have neglected the term of order u2 in the derivation. Equation (22) can 
be easily computed from 4; except the last term. However, we can write 

where S = S,+S,. Invoking the boundary conditions on So and S,, we obtain 

[# v& - @( vq4; - 2va#'J] dS 

Equation (23) still involves the potential 4: in the integral at infinity. This may be 
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rewritten, using the appropriate radiation condition. For this purpose we employ the 
far-field asymptotic form of the Green function, for a wave source a t  small forward 
speed. For a three-dimensional source located a t  ( O , O ,  5) in infinite water depth, the 
Green function may be written (see Haskind 1946) : 

G x 2(1+27cos8) - e x p [ v ( l f 2 ~ ~ 0 ~ 8 ) ( ~ + ~ - i R ) - ~ i . ~ ] ,  (2:Y (24) 

x = Rcos8, y = Rsin8. as R + 00, where 

This is based on the assumption that 7 < 0.25. From this equation we find 

(25) 
aG 
aR - = - ~ v ( ~ + ~ T c o s ~ ) G  (R+oo). 

It follows that the radiation condition on 
kS 

at small forward speed may be written 

@ = = - i v ( ~ + ~ r c o s ~ ) # ~ .  aR (26) 

Using (15), we obtain 
_2.=- i.49, 
aR 

which is the well-known radiation condition without forward speed, and 

A possible objection to the present formulation is raised by (27b), which implies 
that 

$: + 2v2aR cos 8$,” (R  + 00) .  

This suggests that the proposed expansion of the radiation potential in terms of a 
forward speed perturbation parameter is only valid when R < a. I n  particular, for 
a given forward speed the accuracy of the potential given by (15) decreases as R 
increases. The following comments, however, appear pertinent. We are here 
concerned only with the hydrodynamic forces, as given by (22) .  It therefore seems 
reasonable to proceed on the basis that R is fixed and U is sufficiently small to ensure 
satisfactory behaviour of the expansion. We may then compare the results obtained 
in this way with those derived from the more general numerical procedure, which 
does not require the perturbation expansion for $*. 

On this basis, we substitute (27 )  into (23) to obtain 

Thus for the three-dimensional problem 

rij = w2atI - iwbij + piwU [mr $9 - m, $3 dS 

+ piwU[ 2v JSF@ $& ds- 2v2 Ism $; cos 8 dS . (29) 1 
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For the two-dimensional problem, the radiation conditions on #; and #j a t  small 
forward speed may be written as 

when x + - co . Thus, the added mass and damping coefficients can be obtained from 
,- 

Care is needed in calculation of the integrals in (29) and (32), since the integrations 
over S,  or S ,  do not converge; but it is easy to show that in both cases the sum of 
these two integrals is convergent. 

Alternatively, using the asymptotical behaviour of #; a t  infinity (e.g. Mei 1982), 
we may write the last two integrals in (29) as 

I = 21, Is, #: #,"z dS - v Ic, #: #: cos 0 dl, 

where C, is the waterline a t  infinity. We use Stokes theorem for the line integral, and 
retain a t  this stage the possibility of a body piercing the free surface (since we shall 
be using a similar transformation in a later section). We therefore obtain 

(@ #;z-#toz $7) a- v I #: $7 dY9 
= 4, C O  

where C, would be the waterline of the body. For a submerged body the last term is 
of course absent. Thus, (29) becomes 

rii = w2ai3 - iwbij +pioU (mi 4; -mi &) dS 

Similarly in two dimensions, (32) can be written as 

rij  = w2aij - iwbii + piwU (mi 4; - mj #:) ds 
IS" 

where P and Q would be upstream and downstream points of intersection of the body 
with the free surface. 

We have therefore obtained in (33) and (34) - corresponding to three dimensions 
and two dimensions respectively - expressions for the speed-dependent hydro- 
dynamic coefficients, which only involve the velocity potential #; for the zero- 
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forward-speed problem. The terms proportional to forward speed include integrals 
over the free surface and a contribution from the intersection of the free surface and 
the body. For submerged bodies, such as the circular cylinder considered in $3.4, the 
last contribution is of course absent. 

3.3. Properties of the hydrodynamic coeficients 
It is of interest to  consider certain general features of the resulting expressions. First 
we note the form of the diagonal terms rj,, which in three dimensions reduce to ,. 

For the submerged body the waterline integral vanishes, and we conclude that 
forward speed does not affect the hydrodynamic coefficients r j j  of submerged bodies 
a t  least until the second order. If the linear theory were applied to the case of a 
floating body, the line integral in (35) would not in general vanish; but if the body 
were symmetrical about its middle section z = 0, the line integral would also equal 
zero. Similar conclusions hold for the two-dimensional case. 

From (33), we can derive the Timman-Newman relation (Timman & Newman 
1962; Newman 1965). By reversing the direction of forward speed, we obtain 

r i j (  - U )  = w2aij - i d i i  - pioU J [mi +! - mj $3 d~ 
S O  

- p i w ~ u l  J ($: +!z - +L a- J $f #y dy J . 
SF co 

Following the argument of Timman & Newman (1962) that the line integral in this 
equation is negligible for slender bodies and disappears for submerged bodies, and 
noticing the well-known relation aij = aji ,  b, = b,, (e.g. Mei 1982), we obtain the 
expected result 

It should be noted, however, that if the linear theory is applied to an arbitrary body 
a t  the free surface, this relationship is not exactly satisfied. It is subject to the 
assumptions of low forward speed and negligible waterline integral. An illustration 
that for large forward speed (36) may not be satisfied has been given by Wu & Eatock 
Taylor (1988). 

An application of (36) is when the body has fore and aft symmetry. Careful 
analysis gives (Timman & Newman 1962) 

T i j (  - U )  = Tj t (  U )  . (36) 

7 . .  a3 = - 7 j t  (i j), ( 3 7 a )  

except T15 = T24  = 7 4 2 .  (37h c )  

3.4. Results for a submerged circular cylinder 
The foregoing theory is now applied to the case of a submerged body a t  low forward 
speed. We recall that the analysis is based on linearized potential theory, and in 
particular the free-surface boundary condition has been simplified in several respects. 
First, the effect of the steady potential is assumed to be small a t  the free surface. This 
assumption is similar to that adopted by Grue & Palm (1985) and Wu & Eatock 
Taylor (1987). Secondly, we have made the further assumption that since U/(gl) i  6 1, 
the steady potential satisfies the rigid-surface condition (9) and all terms in u2 are 
omitted from the free-surface condition on the body motion potential. We have used 
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the perturbation procedure to  write the radiation potential as the sum of two berms, 
one independent of U and one term linearly proportional to  U. This is based on U/wa 
being small, or F n  = U/(ga)i  4 (va)'. Finally we have assumed Uw/g  < 0.25, in order 
that the desired behaviour a t  infinity is achieved. 

We consider the problem of an oscillating circular cylinder of radius a in infinite 
water depth, such that the distance from its centre to the free surface is h (with 
h > a) .  The solution without forward speed is well known. Ogilvie (1963) for example 
has given a detailed derivation, using the well-known multipole expansion method 
(Thorne 1953). Following this formulation, we write the heave potential in the form 

and the sway potential 

where the polar coordinate system (r ,O) is defined by 

x = rsin0, z+h = rcoso. 

Using the relations 
O0 (kr)mcosmB 

ek(z+h) cos kx = 
m=O m! 

3 

we can write (38) as 

where 

(m- 1) ! (m-2)! +...-- vm-* vm-l e -20h (Ei(2wh) + xi]}, (42) (2h)m +2v{- (2h)m-1 2h 
- -- 

and Ei(x) is the exponential integral (Abramowitz & Stegun 1965). By imposing the 
body surface condition 

0 

a'o sino, (43% 6 )  - coso, A= 
ar ar 

we obtain the linear equations for p ,  and qm 
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where S,, is the Kronecker delta function. Comparison of (44a) and (446) 
immediately shows that p ,  = qm.  The solution of this equation may be obtained by 
truncating the series a t  a finite number of terms, suficient to yield the desired 
accuracy. From (41) and (44) we then write 4; and 4; on the body surface as 

To calculate the hydrodynamic coefficients in (341, we also need to find the steady 
potential 6. This can be obtained most simply by taking v = 0 in (41 b ) .  We have 

amsinme rm an ( n + m - l ) !  + C -sinme C (46) m=l  m ! n=l (n - l ) !  ( 2 h ) n + m  ' 6= C q m  rm 
m=l  

where qm is obtained from the following equation 

Substituting (46) into (45), we may write 6 as 

rm 
amsinme+ 2 - 

m=l mam-l $= C q m  rm 
m-1 

from which, together with (6), we obtain 

a26 1 m 
m3=-- araz - - a2m=l C [ m ( m - l ) ~ m ~ l + ( m + i ) m ~ m + l ] s i n m ~ .  (496) 

These results now enable one to calculate the hydrodynamic coefficients T ~ ~ .  Since 
the diagonal terms 711 and r33 for the submerged body are independent of forward 
speed (in this first-order theory), we only consider T~~ here (noticing 713 = -731). The 
integration over the body surface given in (34) is first evaluated as 

where we have used the relation p ,  = qm.  To calculate the free-surface integral in 
(34), we write the potential on z = 0 as 

ePkh cos kx dk, 

ICm e-kh sin kx dk. 

co 

m-1 

m-1 
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(m-  l ) !  sinm8, v(m-2)! sin (m-  1 )  8, + ,,.rn-l + - - 
ro" 0 

00 -kx 
dk]; (53a) 

e ( -  k sin kh- vcos kh) 
k2 + v 2  

Hrn(x) = fOm =e-lch cos kx dk 
k-V 

(m - I )  ! cos m8, v(m - 2) ! cos (m - 1)  Bo 
ry-l  

+... + - - 

and 
X 

r,, = (x2 + h2$, 8, = tan-'- 
h' 

The last integral in (53) is obtained by changing the integration path in the complex 
plane (Lamb 1932). By substitution of (50) and (52) into (34) and noticing 
a13 = b,, = 0, 713 can be easily found. 

The application of the linear theory to the submerged circular cylinder requires 
h % a. It has been argued (Tuck 1965; Grue & Palm 1985) that h 2 4a may be 
necessary in general, depending on the other physical parameters. The present 
example, however, concerns the validation of the low-forward-speed approximation, 
by comparison with results evaluated by a more complete theory. We thus consider 
the case h = 2a, because this highlights the effects under investigation. 

Figures 1 ( a )  and l ( 6 )  give a comparison of added mass and damping sway-heave 
coupling coefficients from the slow-forward-speed approximation, and from a general 
solution of the linearized potential theory. The latter has been obtained by using the 
coupled finite-element method (Wu & Eatock Taylor 1987). This represents the 
potential in an inner fluid domain surrounding the body surface in terms of finite- 
element shape functions, and combines this with a boundary-element representation 
of the potential in the outer region. The coefficients are zero in the case of U = 0, and 
in the low-forward-speed theory they are linearly proportional to U .  They can 
therefore conveniently be expressed in terms of the non-dimensional coefficient 
rl3/pna2W2(WU/g). The added mass and damping coefficients non-dimensionalized in 
this way are plotted against the dimensionless wavenumber va in figure 1.  The results 
from the present calculation were obtained by truncating the series at m = 5 ,  and the 
finite element solution used 12 elements surrounding the body surface. With the 
radius a equal to 1 m, the forward speed is taken as U = 0.1 m/s in the finite element 
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FIGURE 1. Sway-heave coupling coefficients for circular cylinder at low forward speed submerged 
at depth h = 2a: A, low-forward-speed approximation; -, general numerical solution for 
F n  = 0.03. (a )  Added mass coefficient ; ( b )  damping coefficient. 
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FIQURE 2.  Variation of sway-heave coupling coefficients with forward speed, for a circular cylinder 
submerged at depth h = 2a: A, va = 1.0; V, va = 2.0; x , va = 3.0. (a)  Added mass coefficient; 
( b )  damping coefficient. 

analysis, which corresponds to the Froude number Fn = U/(ga)*  = 0.0319. The 
figures show that the present low-forward-speed formulation provides a very 
accurate solution under these conditions. Furthermore, the successful comparison 
with results from the more complete procedure lends credibility to  the low-forward- 
speed expansion, and to the comments made in the discussion following (27). 

Figure 2 shows the variation of the hydrodynamic coefficients ,al3 and AI3 with 
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forward speed a t  different wavenumbers, within the range Uwlg < 0.25. The limiting 
values a t  zero forward speed were obtained from the equations given above while the 
rest were evaluated by the coupled finite-element method. The results have been non- 
dimensionalized in a similar manner to those in figure 1. Thus according to the theory 
derived above they should be equal to a constant at a given wavenumber. It can be 
seen from the figures that the accuracy of the present results clearly depends on the 
relative magnitudes of Fn and ua. Since the low-forward-speed theory requires 
Fn -4 (va);, it is expected that at lower frequency the applicability of the method is 
limited to a smaller range of Froude number. However it seems from the figures 
that the damping coefficients vary less with forward speed than do the added 
mass coefficients. 

4. The nonlinear effect of the steady potential at the free surface 
4.1. Mathematical model 

As has been discussed, the linearized potential theory can usually only be applied to 
a slender or deeply submerged body. I n  general the free-surface condition for the 
steady and unsteady potentials should be written (Newman 1978) as in ( 7 )  and (8). 
The purpose of this section is to  investigate the nonlinear coupling between steady 
and unsteady potentials a t  the free surface, as included in the first and third terms 
of (12) .  By including these additional terms we aim to derive a formulation more 
appropriate to a body a t  the free surface. 

Once again we express the body motion potential $j as a perturbation expansion 
in the forward speed term, using (15). Substituting (15) into ( 1 2 ) ,  we obtain the free- 

(54) 
surface conditions on $; and $: 

(55) 

$,Sz - u$; = 0, 

$tz - v$i = ~ V U ( $ ~ - -  1 )  $& + ~ V U $ ~  $;y - .a$,” FZz. 
Comparing these two equations with (16) and (18), we can see that there are three 
additional terms in $in (55). However since g+ 0 as 2 + y 2  + co, because of (9), (55) 
will reduce to (18) at infinity. Thus we can conclude that the nonlinear effect of the 
steady potential is localized if the terms in tY and higher are neglected. 
Correspondingly the radiation condition a t  infinity expressed by (27 b) can be used 
here. 

After a very similar derivation to that in the fully linearized problem, we obtain 
the equation for the hydrodynamic forces 

rU = r$ -piwUu (2$! $;x qTX + 24; $;y qTY - 4: $7 &-,,) a, (56a) 1% 
where superscript L indicates the contribution from the linearized theory. 
Alternatively, using 6zz = -$xz-$yy and Stokes theorem, we may write (56a) as 

7 . .  = rL-piwUu ( $ ~ $ ~ x ~ x - $ ~ x $ ~ ~ x + $ ~ $ ~ y $ y - $ f y $ ~ # ~ )  dS 
23 27 [ 1% -Lo cO:$;6xdY-$!$;$yd~)]. (56b) 

But from the body-surface boundary condition (4) on the steady potential 6, we may 
also express the waterline integral as 

c c 
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provided that the body intersects the free surface at a right angle. Hence the 
waterline integral in (56b) exactly cancels the waterline integral in (33), and as a 

(58)  
result the relationship 

is always satisfied in this modified theory, irrespective of whether the body is slender 
or submerged. Furthermore, the diagonal terms T ~ ,  are seen now to be always 
independent of the forward speed, as long as terms in u2 are neglected. 

We may obtain the coefficients for the two-dimensional problem simply by 
omitting the derivatives with respect to y in (56a)  and writing 

Ti,(- U )  = 7,i(u)> 

ry  = r$ -piwUv (2& #yz 6z - 4; #; $J dS. (59) 
JS, 

+ W V [  J s ~ ( # P A - # h # : ) ( l - ~ ~ ) d s ] .  (60) 

Proceeding as in the three-dimensional case, using Stokes theorem and the body- 
surface boundary condition on $, we obtain 

rr, = d a i 5  - iwb,, + piwU (mi #j' - m, #!) dS 
1s. 

From this result we again find that (58) is satisfied, and rj, is independent of U ,  for 
any floating or submerged body. 

4.2. Results for a $outing semicircular cylinder 
We consider the problem of floating semicircular cylinder of radius a in infinite water 
depth, as an example to demonstrate the nonlinear effect of the steady potential 
at the free surface on the hydrodynamic forces. Following Ursell's method (1949), we 
use multipole expansions of $j' in polar coordinates (x = rsin8, z = - r  cos6) 

a, sin(2m+1)8 v sin2m6 for heave and 
# : = q o @ 1 +  m-1 c qmaZ"i'[ p m + l  +--I 2m rZm ' 

dk, 
m e-krcosO cos (kr sin 6) for sway, where 

@ o = # i o  k-v 

and 

The coefficients p ,  and qm are given by the body-surface conditions 

and 

when r = a. The solution of the infinite sets of (63a)  and (63b) can be obtained by 
multiplying both sides by the complete series cos 2m6 (m = 0, 1, . . .) and sin 2mB 
(m = 1,2, .  . .) respectively, and integrating the results from 0 to in. 
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We have shown that for a floating body which intersects the free surface at  a right 
angle the diagonal terms 7jj from this theory are equal to those without forward 
speed, and since the cylinder is symmetric this will also be the case using the fully 
linear theory of $3.  Thus we only discuss here the coupling terms r13 and 731. We first 
use the linear theory to obtain 7F3 and 7k1. From (32) we see that 7,“, involves an 
integral over 8, and 8,: this can be expressed in terms of 

Substituting (61) into (64), we obtain 

where 
= --ua[y-dz+nua 1 

Lzm+i 2 m + l  

[-Ci(ua)+isi(ua)] ( - iua)zm e-iva + (-  iua)2m +...+ 
(2m) ! (2m) ! 

M = - 1 + 2 u a  ~ f ( Y a z ) d x - ( u a ) z ~ ~ f z ( u ~ x ) d x  - 

- 2uan[ - Ci (ua) + i si (ua)] + 2(  ua)% 

1 x  

e-i”azf( uaz) dx - e-2ii’a . (66b) 
2i 

Ci (z) and si (2) are cosine and sine integrals (Abramowitz & Stegun 1965) and 

f(z) = Ci (5) sin x- si (x) cos x. (67) 

At low forward speed, the steady potential 6 for the semicircular cylinder can be 

(68) 

The details of these derivations are given in the Appendix. 

obtained as 
- a2 # = - -  sin 8. 

r 

From (6c), we obtain 
2 cos 28 

m1 =-, (69a) a 

2 sin 28 
m3 = -. 

a 

Substituting (69) and (64) into (32) ,  we obtain 

‘13 - - 4 P i d J r  [cos 20#: - sin 28$3 dB + 4piwUuI(ua). 



The hydrodynamic force on an oscillating ship 349 

(4 
x lo-' 
4 
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1 

@naPwU/g) 

- 1  

-2 

-3 

-4 
1 2 3 4 5 

va 

(b) 
x lo-' 

15 

10 

5 
A 

@nazwPU/g) 
0 

- 5  

- 10 
1 2 3 4 5 

va 
FrouRE 3. Sway-heave coupling coefficients for a floating semicircular cylinder based on 
low-forward-speed approximation. (a )  Added mass coefficient ; ( b )  damping coefficient. 

Similarly, we have the integral over the free surface and at infinity for rt, 

H(ua) = $!z 4; d s  - v j 4; 4; dS 
S+, 

a, 

= - #!(a) 4",4 - 5 & @L dx+ vJs+, 4! 

= -&(a) &(a)-I(va). 

From (32)) we obtain 

= piwU 

= -piwU 

(m, 4; - m, 4:) ds + 4piwUuH( ua) 
1s. 

I,. (m, q5: - m3 4;) ds -4piwUvI( ua)  - 4piwUu4!(a) &((a) 

= -~?,-4upiwU&(u) &(u). (72) 

Following a very similar derivation, we can obtain the equations for 7,, and r3, 
including the nonlinear effect of the steady potential at  the free surface. From (60), 
(68) and (69) we obtain 

T ~ ,  = QiwU~[cos26&-sin 26q5!]d6+2piwUvK(va), (73) 

The evaluation of K(va) is similar to that of I(ua). 
Values of 713 and 731 for the semicircular cylinder are presented in figures 3 (a )  and 

3 ( b )  as added mass and damping coefficients, non-dimensionalized by (wU/g) pxa2w2, 
and plotted against dimensionless wavenumber ua. It can be seen from the figures 

12-2 
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that the nonlinear effect of the steady potential is important in the range of 
frequency plotted. It seems, however, that  the nonlinear influence on the damping 
coefficients becomes less significant as the frequency increases. It may also be noticed 
that the solution from the linear theory does not satisfy the reverse flow relationship 
because of the ‘line integral effect’; but inclusion of the nonlinear coupling with the 
steady potential eliminates this difference. 

5. Concluding remarks 
The present formulations are part of an investigation into the behaviour of 

oscillating bodies at low forward speed. The foregoing analysis has shown that 
hydrodynamic forces may be effectively calculated using the low speed theory. In  
addition to the assumptions of ideal fluid flow, the theory is limited by the following 
conditions : the oscillatory body motions are small ; the Froude number V/(gZ)f 4 1,  
where 1 is a characteristic lengthscale in the steady forward speed problem ; U/wa < 1 
and Uwlg < 0.25. 

These assumptions lead to the perturbation theory based on a small forward speed 
parameter. Although the resulting perturbation expansion for the velocity potential 
is not uniformly valid as R + 00, we argue that the approach is justified by the 
foregoing restrictions and because we only use the resulting series to obtain 
integrated forces on the ship. Where we have made comparisons with the results of 
a more complete theory (for the more severe test of a two-dimensional problem), 
these have fully confirmed the validity of the approach. 

The fully linear theory developed in $3  is based on specification of a boundary- 
value problem which has received considerable attention previously. It is applicable 
to deeply submerged bodies, or slender bodies a t  the free surface. The low-speed 
analysis suggests that  in this form the theory leads to hydrodynamic coefficients 
which in principle may not satisfy the reverse flow relationships proposed by 
Timman & Newman (1962). It can be argued however that consistency is retained, 
since these relations are found to  be satisfied exactly for submerged bodies ; and for 
slender bodies a t  the free surface they are approximately satisfied, since the waterline 
integral in (33) is then negligible. 

By including additional coupling effects between the steady and unsteady 
potentials in the free-surface boundary condition, we have introduced a degree of 
nonlinearity into the conventional formulation. The resulting theory has been 
applied to a body a t  the free surface, and it has been found that the reverse flow 
relationships are now satisfied, irrespective of whether the body is slender or not. 

These effects have been illustrated by obtaining analytical solutions for a 
submerged circular cylinder and a floating semicircular cylinder. In principle the 
same general formulations based on the low-speed approximation may be applied to 
arbitrary bodies in two or three dimensions. The major difficulty is the evaluation of 
the free-surface integral, but this may be overcome by adopting procedures similar 
to those used in calculation of the second-order diffraction force on a body in waves 
(e.g. Eatock Taylor & Hung 1987). The results obtained here give an indication of the 
importance of the forward speed effect for cylinders, even a t  low speeds, and also 
illustrate the importance of the nonlinear effect due to the steady potential a t  the free 
surface. 
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Appendix. Evaluation of the term I (  va) in equation (64) 
The integration over S,  and S, in (32)  for a circular cylinder can be written as 

where I , ,  is the integral over S+, given by 

$ o $ l d ~  ( x + + c o ) .  

Using (62b) ,  (A 1 )  becomes 

where 

To compute L,,,, and M ,  we first write $1 on the free surface 

a ffi sin (Ex) 
dk - vasci sin (vx)  k-v  

a 
dk - vasci sin (vx)  

X k-vx 

U sin k cos (vx) + cos k sin (vx)  
k dk - vani sin (vx)  = -+ vaPV 

X 

= a + va { cos vx [ 1; d k  +in] +sin vx l: d k }  - vani sin (vz) 
X 

U 

X 
= - + va cos (vz) [Si (vz) + in] - va sin vx Ci (vx) - vani sin (vz) 

U 

X 
= ---vuf(vx)+vanC-'"~ ( x  > O ) ,  
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where Ci (z) and Si (x) are cosine and sine integrals respectively and 

G .  X. Wu and R. Eatock Taylor 

Si (x) = si (z) +in, 
f(x) = Ci (x) sin z - si (x) cos x, 

as defined by Abramowitz & Stegun (1965). Thus 

( - iva)2m e-iua + ( - iva)2m [-Ci(va)+isi(va)]}. +...+ (A 8) ( 2 m )  ! (2m)  ! 

Similarly, we have 

M = - l ~ ~ [ l r + v ~ n e - i u x - v a f ( v z )  

- 

a x  

= - [ ~ { [ ~ - v a f ( v u z ) ~ + 2 v ~ n e ~ ~ ~ ~ ~  [: --vaf(vax) I} dx+-e 21va 2iuaxlF +I+,. 

Noticing the contributions from infinity will cancel each other, we have 

dz - ( ~ a ) ~  1rf2( vaz) dx - 2van[ - Ci (va) + i si (va)]  

. ( A 9 )  
van2 

21 
+ 2( va)’n 1: e-i”axf( vax) dx - - e-liUa 
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